miércoles, 20 de mayo de 2009

Sistema equivalente de fuerzas

1.-FUERZAS EXTERNAS QUE ACTÚAN EN UN CUERPO RÍGIDO

Las fuerzas externas representan la acción que ejercen otros cuerpos sobre el cuerpo rígidos, son las responsables del comportamiento externo del cuerpo rígido, causarán que se mueva o aseguraran que este permanezca en reposo.

2.- FUERZAS INTERNAS QUE ACTÚAN EN UN CUERPO RÍGIDO

Son aquellas que mantienen unidas las partículas que conforman al cuerpo rígido. Si este esta constituido en su estructura por varias partes, las fuerzas que mantienen unidas a dichas partes también se definen como fuerzas internas.

3.- PRINCIPIO DE TRANSMISIBILIDAD

El principio de transmisibilidad la condición de equilibrio o de movimiento de un cuerpo rígido, permanecerá inalterada si una fuerza que actúa en un punto dado del mismo se reemplaza por una fuerza de la misma magnitud y dirección, pero que actúa en un punto distinto, siempre y cuando ambas fuerzas tengan la misma línea de acción.

4.- Producto vectorial de dos vectores

En álgebra lineal, el producto vectorial es una operación binaria entre dos vectores de un espacio elucídelo tridimensional que da como resultado un vector ortogonal a los dos vectores originales. Con frecuencia se lo denomina también producto cruz (pues se lo denota mediante el símbolo ×) o producto externo (pues está relacionado con el producto exterior).El producto vectorial de dos vectores P y Q se define como el vector V que satisface las siguientes condiciones:1.-la línea de acción de V es perpendicular al plano que contiene a P y Q2.- la magnitud de V es el producto de las magnitudes de P y Q por el seno del angulo formado por P y Q cuya medida siempre será menor o igual que 180 grados.V = PQsen del angulo

5.- Producto vectorial expresado en terminos de componenetes rectangulares

El producto veLos productos vectoriales para los diversos pares posibles de vectores unitarios son:ixi=0ixj=kixk=-jjxi=-kjxj=0jxk=ikxi=jkxj=-ikxk=0

6.- Momento de una fuerza con respecto a un punto

Sea una fuerza F que actúa sobre un cuerpo rigido.Se define el momento de uan fuerza F con respecto o alrededor de un punto O,como:Mo= r x FDonde (r) representa el vector de posición del punto dobre el cual se aplica la fuerza.La dirección y el sentido del vector de momento Mo, obedece a la egla de la mano derecha.Su magnitud es: Mo= rFsenθ = Fdd: es la distancia perpendicular de O a la línea de acciñon de F.

7.- TEOREMA DE VARIGNON

Elteorema de Varignon es visto, gracias al empleo del cálculo vectorial, como una obviedad. Sin embargo, en su época tuvo una relevancia fundamental, ya que las fuerzas no eran vistas como vectores con un módulo, dirección y sentidos dados, sino como entelequias tremendamente abstractas cuyo tratamiento se veía complicado por una difícil e ineficaz semántica y simbología (que la notación de Leibniz vino a solventar), y por el empleo de técnicas geométricas muy ingeniosas pero difíciles de tratar.Su enunciado, según la terminología actual, vendría a ser:"El momento resultante sobre un sistema de fuerzas concurrentes es igual a la suma vectorial de los momentos de las fuerzas aplicadas."Demostración Sea un sistema de n fuerzas concurrentes, F1,F2,...,Fi,...,Fn, vectores en un espacio euclídeo, que tiene como punto de aplicacion un cierto punto A. El momento de cada fuerza Fi con respecto a O será: Mi = rxFi (producto vectorial). Nótese que escribimos r y no ri, ya que todas las fuerzas se aplican en el mismo punto. El momento de la resultante R es: M = rxR donde R = F1 + F2 + Fi + ... + Fn y r es nuevamente el vector posición común. Aplicando la propiedad del producto vectorial, tenemosrxR = rx(F1 + F2 + Fi + ... + Fn)rxR = rxF1 + rxF2 + rxFi + ... + rxFn) entoncesM = M1 + M2 + Mi + ... + MnLuego, efectivamente "el momento resultante es igual a la suma vectorial de los momentos de las fuerzas aplicadas si estas son concurrentes"

8.- COMPONENTES RECTANGULARES DEL MOMENTO DE UNA FUERZA

La determinación del momento de una fuerza en el espacio se simplifica en forma considerable si el vector de fuerza y el vector de posición a partir de su punto de aplicación se descomponen en sus componentes rectangulares x y y z por ejemplo: considere el momento Mo con respecto a O de una fuerza F con componentes Fx, Fy y Fz que esta aplicada en el punto A de coordenadas x y y z se observa que las componentes del vector de posición R son iguales, respectivamente, a las coordenadas x y y z del punto A :Se puede escribir el momento Mo de F con respecto a O: Mo= Mxi + Myj

jueves, 7 de mayo de 2009

DEFINICIONES UNIDAD IV

Fuerza
La fuerza se puede definir como una magnitud vectorial capaz de deformar los cuerpos (efecto estático), modificar su velocidad o vencer su inercia y ponerlos en movimiento si estaban inmóviles.La fuerza puede definirse como toda acción o influencia capaz de modificar el estado de movimiento o de reposo de un cuerpo (imprimiéndole una aceleración que modifica el módulo, dirección, o sentido de su velocidad), o bien de deformarlo.

Equilibrio
Se denomina equilibrio al estado en el cual se encuentra un cuerpo cuando las fuerzas que actúan sobre el se compensan y anulan recíprocamente.Cuando un cuerpo esta en equilibrio estático, si se lo mantiene así sin ningún tipo de modificación, no sufrirá aceleración de traslación o rotación, en tanto, si el mismo se desplaza levemente, pueden suceder tres cosas:1.-Que el objeto regrese a su posición original (equilibrio estable) 2.-Que el objeto se aparte aun más de su posición original (equilibrio inestable) 3.-Que se mantenga en su nueva posición (equilibrio indiferente o neutro)

Momento
Instante de tiempo.La propiedad de la fuerza para hacer girar al cuerpo se mide con una magnitud física que llamamos torque o momento de la fuerza.

Momento de un par
Un par de fuerzas es un conjunto de dos fuerzas iguales y de sentido contrario aplicadas en puntos distintos.
El momento del par de fuerzas o torque se representa por un vector perpendicular al plano del par, cuyo módulo es igual al producto de la intensidad común de las fuerzas por la distancia entre sus rectas soporte, y cuyo sentido está ligado al sentido de rotación del par.un par de fuerzas actuando sobre un cuerpo y los vectores de posición y en dos puntos sobre sus respectivas líneas de acción;El momento sera: Mo=(r1-r2)*F=r*Fdonde r1 y r2 sonen dos puntos sobre sus respectivas líneas de acción

Apoyo
Es el punto donde se asume se producirá el equilibrio de las fuerzas del sistema. Dicho de otra forma, es el lugar a donde centrarás cualquier análisis de un sistema de fuerzas

Reacción
una reacción es una fuerza de sujeción de un elemento resistente al suelo u otro elemento de grandes dimensiones que sirve de soporte al elemento resistente

Armadura
Una armadura es un ensamble triangular que distribuye cargas a lo soportes por medio de una combinación de miembros conectados por juntas articuladas, configurados en triángulos, de manera que idealmente todos se encuentren trabajando en compresión o en tensión pura y que todas las fuerzas de empuje se resuelvan internamente. En la práctica, algunos esfuerzos de flexión pueden ocurrir como resultado de la fricción de las juntas y de las cargas distribuidas aplicadas a los miembros entre las juntas; generalmente, estos esfuerzos son menores comparados con las fuerzas axiales y, por lo común, se ignoran para propósitos analíticos


Fuerzas en el plano y en el espacio.
Una fuerza representa la acción de un cuerpo sobre otro y, generalmente, esta caracterizada por su punto de aplicación, su magnitud y su dirección. Sin embargo, las fuerzas que actúan sobre una partícula dada tienen el mismo punto de aplicación.
La magnitud de una fuerza esta caracterizada por un cierto número de unidades, las unidades del SI utilizadas para medir la magnitud de una fuerza son: el newton (N) y su múltiplo el kilonewton (kN), igual a 1000 N, mientras que en el sistema de unidades de uso común en los estados unidos las unidades empleadas para ese mismo propósito son, la libra (lb) y su múltiplo la kilo libra (kip), igual a 1000 lb . La dirección de una fuerza esta determinada por la línea de acción y el sentido de la fuerza. La línea de acción es la línea recta infinita a lo largo de la cual actúa la fuerza; esta caracterizada por el ángulo que forma con respecto a un eje fijo (figura 4.1). La fuerza misma se representa por un segmento de dicha línea; a través del uso de una escala adecuada, la longitud de este segmento puede ser seleccionada para que represente la magnitud de la fuerza. Finalmente, el sentido de la fuerza debe ser indicado por una punta de flecha. Al definir una fuerza es importante indicar su sentido

Equilibrio de una partícula
La condición necesaria y suficiente para que una partícula permanezca
en equilibrio (en reposo) es que la resultante de las fuerzas que actúan sobre
ella sea cero
Naturalmente con esta condición la partícula podría también moverse
con velocidad constante, pero si está inicialmente en reposo la anterior es una condición necesaria y suficiente.

Momento de una fuerza
En mecánica newtoniana, se denomina momento de fuerza, torque, torca, o par (o sencillamente momento) [respecto a un punto fijado B] a la magnitud que viene dada por el producto vectorial de una fuerza por un vector director (también llamado radio vector). El momento de fuerza es equivalente al concepto de par motor, es decir, la fuerza que se tiene que hacer para mover un cuerpo respecto a un punto fijo (Ej: un electrón respecto al núcleo) y se condiciona por la masa y la distancia